
Here G = r/R, Go = r~/R, KR = To/0gR is the surface-curvature parameter. The upper sign in 
expressions (12), (13), and (15) relates to the inside-face problem, the lower sign to the 

outside-face problem. 

The results of a numerical integration are presented in Figs. 2 and 3. The behavior of 
the velocity Wo of the quasisolid core relative to the wall and the zone boundary Go is qual- 
itatively similar to the plane case. The other parameters being equal, the maximum values 
W~ ax and Ii -- g~ax I for a film on the inside surface of a cylinder are higher and displaced 
to the right as compared with the case of flow off the outside surface. In this connection 
the mass of liquid shaken off is greater for the film flowing off the inside surface of the 
cylinder (Fig. 4). As the deceleration parameter A increases, so does the mass of liquid 
shaken off. The rate of increase is particularly significant up to A ~ i0. 

1. 
2.  
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VARIATIONAL SOLUTION OF EQUATION OF NONLINEAR MASS 

AND ENERGY TRANSFER 

L. S. Kalashnikova, I. N. Taganov, 
and V. P. Volkova 

UDC 66.015.23:519.34 

The use of a variational principle of Hamilton type is considered for problems of 
nonlinear mass transfer in a semibounded plate with constant and variable diffu- 
sional properties. 

In complex cases associated with heat and mass transfer in systems with chemical trans- 
formations or polymerization processes, in biological systems, and in special cases of cata- 
lytic processes, significant deviation from the Fourier and Fick laws is observed. Processes 
of heat and mass transfer of this kind may be mathematically described by an equation of the 
form 

-&P - - d i v ( w [ )  - ,t* 02q~ :. div [/e (q') (grad q')"] ' F(cf), ( 1 )  

zz~ 1. 

This equation may be obtained on the assumption that the flux of material is determined 
by an expression of the form [I] 

In the case of heat transfer, @ represents the thermal energy; in the case of mass trans- 
fer, the concentration. For the heat-transfer equation F(~) is a heat source or sink and for 
the mass-transfer equation a mass source or sink due to chemical transformations. 

Consider the case of mass and energy transfer in a semibounded plate with variable dif- 
fusional properties in the presence of a chemical reaction; in this case, Eq. (i) takes the 
form 

OCoT ~- 0 [D*(C)( O-~x )"] -?kCm' n ~  l' m=: l' 2' _ ( 2 )  

where k is the rate constant of the chemical reaction; m is the order of the chemical reac- 
tion. In the general case it is expedient to assume that the order of the reaction may be 
either integral or fractional. 
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The concentration distribution is assumed to be uniform at the initial moment; i.e., at 

T = 0, C(x, 0) = 0. 

In accordance with the idea of the penetration depth of the concentration front, the 
parameter 6(T), the extension of the region with nonzero concentration, is introduced. For 
x > ~(T) the plate has a uniform initial mass concentration and there is no mass transfer. 

A boundary condition of the first kind specifies the concentration distribution over 
the surface of the plate at any moment of time; in this semibounded plate the concentration 

distribution at the boundary is 

C(O, T)~O(Q;  C(6(~), r) = 0 ;  O ~ x ~ 6 ( ~ .  (3) 

A variational principle of Hamilton type [3-7] will be used to solve Eq. (2) with the 
boundary conditions in Eq. (3). This method is characterized by the introduction in the La- 
grangian of a parameter %, which tends to zero when the variational process is complete. By 
this means it is possible to obtain an artificial approximation to problems for which there 

are no classical integrals of Hamilton type. 

The approximating solution of Eqs. (2) and (3) is sought in the form 

X 
C(x, l : )=0(z)~v;  [ , =  1 - -  6(r---) ' 

p is a positive integer. 

Consider the Lagrangian 

L - -  I 2 ( n +  I) ~ 2 t - - ~ - )  

The corresponding Euler--Lagrange equation is 

O2C + OC _ a 
O~ Or Ox 

When X § 0, Eq. (6) r e v e r t s  t o  gq. ( 2 ) .  
ing the minimum of the functional 

kD* (C) Cm+l 1 

S o l v i n g  Eqs.  (6) and 

"r, 5(1:) 

t =  .t" Lexdr, 
To 0 

where the time integral is chosen arbitrarily. 

Le t  

D* (C) = k o ~ ai~ p~ = ko [% § al~P 2_ a2~2p 2- 
i=0 

...], 

(4) 

(5) 

(6) 

(3) is equivalent to find- 

(7) 

(8) 

where ko and a i are constants. 

After evaluating the inner integral, Eq. (7) takes the form 

where 

I $ = 
S [ Dko%p202 (T) 6 '~" (~) "~' Ak~ pn+l 0n+l (T) ~_ S~o ~,0'2 (T) ~ (T) ~ -t- 

- -  2 ( n - ~ 1 ) 6  n(r) 2 6(r) 
To 

+ Eko%pO (~) 0' (r) 6' (r) q- m + 1 j exp dr, 

'2 

A (E m(n q- 2i + 1 ) - - n  
i=0 

(9) 

E at B =  p (2 -~ i) @ l 
i=O 
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~=o [p (i § 

ai 

2 ) -  11 p( i  -}- 2)[p( i  -? 2) -? 11 

E ~ V ai = 
(2 + i) p [p (2 -r- i) + 11 

p ( m + i +  l)-~, 1 
i=:O 

The necessary condition for an extremum of the functional is that its variation should 
vanish; i~ the Euler--Lagrange equation must be satisfied on the curve realizing the ex- 
tremum of the functional [2]. 

The appropriate Euler--Lagrange equation for Eq. 

.4konp~+ ~ O~+ ~ (~) . .  Fkko 0~+~ (~) 
2 ( n @  1)6 ' -~  (~) m +  1 

[[ 2DkoP~O ~ (x) 5' (~) 
- - e k o p  0 U) Q' (~) = ~ tL 

(9)  is 

2Dkop~O ~ (T) 6' (~,) 
(~) 

>]' @ EkopO (~) O' (~ - -  

BkoO '~ (~) Dkop202(~) 6 '~ (-c)[ (10)  
2 6 2 (~) ~ " 

Letting ~ tend to zero, the result is an ordinary differential equation of the form 

a (~n@l(T)) [ e(,l-~- ])0'(T) f~(fl~- l)0mn~-I (T)] 6n_i_ l Akos on--I ('g) (11) 
d'~ 2DpO (T) 2D (m -} 1) pZ (1:) = 4D 

Solving this equation gives 

A kon p,,- i 
6 '~+ t (~) _ 4D 

2.1 TI 

TI 
, ] �9 exp Fk (n T 1) 0" '-  i ('r) E (n + 1) 0' (~) d'r X 

2D (m + 1) pZ 2DpO (~) 
2" 0 

i {~'i[ ~ (I/" ~- ]) O, ('~) F/i~ (Yt ~-i)otn-I ('~)] } On-I 
>< exp 2DpO (T) - -  2D (m - ~ - - ~ f  " dz (~) dz, (12) 1)p j 

%0 2.0 

and ~(x'o) = 0. 

Using Eqs. (12) and (4), an approximating solution for Eqs. (2) and (3) is obtained. 

To estimate the error of this solution, Eq. (2) is transformed using the substitution 

~,~ x - 
= - -  , $ = z .  (13)  

6 (~) 
Successive evaluation gives 

OC - 0' ('v)(1 --)~)P -~- 0('r) p (1- -Z~)  p-I Z~ ('r) , 
6 (-r) 

OC _ pO (T) (1 -- ~,1) p- I 
0~,~ 5 (~) ' 

OzC _ p ( p - -  1) 0 (~) (1 - -2~ , )  p-2 
O~ 6 2 (T) 

and it will now be expedient to introduce the notation 

_ o ) _ 

S u b s t i t u t i n g  E q s .  ( 1 4 ) - ( 1 6 )  i n t o  Eq~ (17)  g i v e s  t h e  m e a n - s q u a r e  v a l u e  o f  t h e  e r r o r  

j . _  8 '~(~) ~_. 0(@0'(T) 5'(v) ..L PO2(~) 0 ' s ( T )  L kS 
2 p + l  ' ( 2 p @ l ) 6 ( T )  ' (4p2--1)6z(T) ' 2pm 1 - -  

04) 

(15) 

(i~) 

(17) 
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Fig. i. Concentration distribution 
for r = I (i), 2 (2), 3 (3), and 4 
sec (4); p = 3; D* = 10 -9 m2/sec. 

2k [O,(r) O(z)O'(z) J 
p -k pm -i- 1 ( m - -  1) 6 (x) 

2 21~ 2H 
ko p O (T, ) {(QI+Q2)( ]  1,z (p 17) aoa , 

6 2'~ ('0 6 z (~) (p - -  1) (1 -- 2n) 

, n ,p 1) [ a o n ( p - - 1 )  ]} 
-- 6 (T) (2pn 2n ~ 1) 6 (x) Qz -~- 

2koP'*"lO"+l( 'c)6'(x) [ Q ~ (  1 n ( p  1) ) 
~- 6 "+~ (~) 6 (~) " 

aoFt ] I 
(n t) (pn - -  n p) 6 ('0 = 

4 2 k ~  [ ( 
' 6" (~) C~O' (-~) 1 n ( p - - 1 )  " n ( p - - 1 )  ( a~O'(x) _ _ k Q s ) ] .  (18) 

6 (~) ,I 6 ('c) . pn - -  n - -  p , 

where 

Qi = 2i t -- 2pn - -  2n i=l 

i=o ]=~1 

aia j  

(i -k ]) P - -  1 -k 2pn - -  2n 

i=1 

i p ' -  p n - - n  q- p 

Ct~ 

(ip - -  1 - pn - -  n -+- p) (ip -k pn - -  n -1- p) 

E aZ Q5 =- pn - -  n -b  ip -4- pm  

Consider the par~cular case of Eq. (I) corresponding to the nonlinear mass transfer in 
a semibounded plate with constant diffusional properties; in this case, Eq. (I) takesthe form 
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TABLE I. Values of the Error J 

n = l  n = 0 , 7 5  n = 0 . 5  

a " J x :  

I 
1 ~ O, 0633 
2 i 0,0067 
3 0,0058 

i 

JT~ 

0,1088 
0,0237 
0,0051 

I j-~t 
! 

9 O, 1481 
O, 0363 

i o,ot39 

_a_c__ ~ _a ! D, ( a c  ' I " ]  , ,~<1.  ( : 9 )  
at Ox ] ' Ox ' J 

I t  i s  p o s s i b l e  to so lve  Eqs. (19) and (3) us ing  a v a r i a t i o n a l  p r i n c i p l e  of  Hami l ton 
type,  the approx imat ing  s o l u t i o n  being w r i t t e n  i n  the form i n  Eq. (4) .  The Lagrangian i n  
Eq. (5) takes the form 

t)~ , ~c ' , ,  ~ , ,  ~?,~ ~2]~.,~( ]. (20)  

Then, following the known scheme [3], 6(T) may be evaluated, 
T: l 

8 (~-~ L .... p - ;u - - , i -  p /, ,,' o ~" (~,) ~-: J o ~'~' (~)] , ( 2 : )  
To 

and 6(:o) = 0. 

Using Eqs. (21) and (4), an approximating solution of Eqs. (19) and (3) is obtained. 

The mean-square error may be evaluated in accordance with Eq. (18), which in the present 
case reduces to the form 

j :-: 0 ' ;  (~) _'...D*~'nZp ~'' 0 ~'" (r) ( p - -  1) 2 

2 p - _  1 ( 2 p n - - 2 n - -  l)8-~176 (r): 

pOi('r) 8':  ('r) 2D*np~(p - -  1)0' ('r) 0" (r) 

(4,~ -- 1) 62 ('r) (pn -- n - .  p) 8 "-'-I ('r) 

0' (r) 0 (:) 8' (:) 
(2p + I)8(r) 

2p "+1 D'nO n+' ('r) 8' ('t) 

(n I) (pn -- n + p)6"-:--=i~) - 

As an example, Fig. 1 shows the solution of Eqs. (19) and (3) for O(z)= 1 withdifferent 
degrees of nonlinearity n. 

One of the main problems in the practical use of the variational method is the choice 
of the order of the approximating polynomial. In [3] much attention was given to the ques- 
tion of the optimum profile. It was shown that the optimum profile is a polynomial of first 
or second order for the case of the energy distribution. Solutions of the linear equation 
obtained by different methods were compared in [9, i0]. In [4-7] parabolic profiles of the 
energy or concentration distribution were chosen for the solution of various linear problems. 

Despite these results, approximating polynomials of higher order were used in [3, 8]. 

In [8] a cubic profile of the energy distribution was chosen in a variational solution 
using a local potential. In [3] the nonlinear heat conduction in a semibounded body was 
calculated by a variational method of Hamilton type using a cubic polynomial for the profile 
of the energy distribution. The approximate solution obtained is in good agreement with the 
accurate solution. 

To solve Eqs. (19) and (3) a cubic profile of the concentration distribution was chosen. 
Table 1 gives values of the error for various n and p. An analysis of these errors leads to 
the choice p = 3 for the solution of the problem. 

NOTATION 

C, concentration; O(T), concentration at the left-hand boundary of the region consid- 
ered; D*, diffusion coefficient; k(~), transfer coefficient; ~, flux of material; v, veloc- 
ity; p, order of approximating polynomial; x, coordinate; z, time; Z*, relaxation time; zo, 
T:, boundary values of time interval; ~(r), penetration depth of concentration front; I, La- 
grangian multiplier. 
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HEAT TRANSFER IN TURBULENT FLOW OF POLYATOMIC 

GASES ALONG A TUBE 

O. A. Nekhamkina and M. A. Rotinyan UDC 536.244:532.542.7 

Anumericalmethod is used to calculate the transfer to ammonia for different models 
of turbulent viscosity. The results obtained are compared with experimental data. 

With the increase in heat-flux levels in various power stations and the growing variety 
of heat carriers (polyatomic and chemically reacting gases, material in a near-critical and 
supercritical state, etc.), there has arisen a need for methods of calculation of the tur- 
bulent flow along a tube of liquids with strongly variable physical properties. 

Both physical and mathematical difficulties beset the solution of this problem. Because 
there is no consistent theory of turbulence at present, it remains uncertain whether semiem- 
pirical models of turbulence developed for flows of incompressible liquid along a tube may 
be used for liquids with variable properties. From a mathematical viewpoint, the existing 
temperature and pressure dependences of the physical properties of the liquid lead to "strong" 
nonlinearity of the initial system of equations, so that it is necessary to use finite-dif- 
ference methods for its solution. 

Such methods have been used to obtain solutions for turbulent flows of gaseous nitrogen 
and air [i] and hydrogen in a state of equilibrium dissociation [2] along a circular tube. 

In [i], a comparative analysis of Ii different models of turbulent viscosity was made on 
the basis of experimental data. It was shown that in the conditions under consideration the 
formula of [4] gives the best agreement with experiment [3]. 

In [2] turbulent viscosity was determined using the Reichardt formula [5] with Goldman's 
correction [6]. 

In both cases it was assumed that the turbulent analog of the Prandtl number is unity, 
that the gas is perfect, and that the pressure dependence of the thermodynamic properties 
and molecular transfer coefficients is negligible. Note that the last two assumptions con- 
siderably restrict the use of these methods, and the conclusions drawn as to their applica- 
Bility require further verification. 

The present paper outlines a finite-difference method that may be used to calculate tur- 
bulent flows in circular tubes for arbitrary temperature and pressure dependences of the 
thermodynamic and transfer properties of the gas. 

The results obtained for the heat transfer to ammonia using the formulas of [4, 5] and 
two variants of the Millionshchikov formula [7, 6] to determine the turbulent viscosity are 
compared with experimental data [8]. The Millionshchikov formula is of great practical 
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